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USA
‡ Institut für Kernphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
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Abstract. In this paper, the behaviour of the electron–positron momentum density of non-
interacting particles,ρIPM( p), in a periodic lattice potential is investigated. On the basis of
general considerations, we show that in each metal there are some components ofρIPM( p)

which are only weakly sensitive to approximations used in the calculation of the positron wave
functionψ+(r). This means that in these regions ofp, the two-particle densityρIPM( p) can be
evaluated with a high accuracy, largely independently of uncertainties arising from the different
approximations used in calculating the functionψ+(r). This property ofρIPM( p) can be useful
for the verification of various approaches used for describing the electron–positron interaction
in real metals.

1. Introduction

In experiments using the angular correlation of positron annihilation radiation (ACPAR)
technique, one measures linear (or planar) integrals of the momentum density of electron–
positron annihilation pairs (MDAP),ρ( p). It is well known that the annihilation process
is strongly influenced by the Coulomb interaction between the electrons and the positron.
Theoretically, this influence can be described by a momentum-dependent enhancement factor
ε( p) which is defined as the ratio of the real momentum density and the density within the
independent-particle model (IPM):

ε( p) = ρ( p)/ρIPM( p) (1)

where, in the IPM, the interaction of the annihilating fermions is completely ignored.
The enhancement of the annihilation rate has been intensively studied for the jellium

model (for reviews see [1–3]). However, there are still problems concerning a description of
the enhancement effect in realistic systems, i.e. for the inhomogeneous electron gas found in
real metals. Here various theoretical approaches have been proposed (for reviews see [1–5])
which lead to different results forε( p), especially for the higher-momentum components
(HMC) of the momentum density distribution [6–18].

To decide which theoretical approach describes reality more closely, careful comparisons
of theoretically and experimentally obtained MDAP results are necessary. Of course, such
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a comparison requires a precise calculation ofρ IPM( p) as well as a precise analysis of the
experimental data [19–24]. However, as has been shown in [19–21], the HMC densities are
generally remarkably sensitive to details of the calculations, such as the crystal potentials
used and the accuracy of the positron wave function. Nevertheless, as has been shown by
Sormann anďSob for the alkali metals (bcc structure) [19] and for Cu and Pd (fcc structure)
[21], this sensitivity of the MDAP is weak for the HMC which lie close to the centre of the
momentum space. Moreover, Daniuket al [23] obtained the result that total annihilation
rates are also only weakly sensitive to details of the calculation of the positron wave function
ψ+(r).

In the present paper which is based on the theory proposed in [4], we explain numerical
results from the literature [19–24]. Beyond that, the theory presented in section 2 is even
more general, showing that for each metal and for each electron statekj there exist at least
two components ofρ IPM( p) which are only weakly sensitive to approximations used in
evaluating the positron wave function, namely the leading density component (the density
of the highest value) and at least one dominant Umklapp component. Moreover, our theory
also shows that the higher the value of the Umklapp density, the smaller this sensitivity
is, which is remarkable because it is just these ‘stable’ densities that can be really studied
experimentally. This property of the MDAP is important for a reliable verification of various
approaches used for a theoretical description of the electron–positron interaction, because
if we compare experimental and theoretical annihilation rates especially for the Umklapp
components we have no need to be concerned that eventual disagreements between theory
and experiment may be connected with erroneous IPM rate calculations due to uncertainties
arising from approximations used in calculating the positron wave function.

In this context it should be emphasized that there is, of course, no actual necessity to
use approximative positron wave functions in IPM rate calculations. In fact, there exist rate
formulae which take into account the full spatial anisotropy ofψ+—for example the formula
based on the Korringa–Kohn–Rostoker (KKR) method and a multiple-scattering formalism
[25–27]. Nevertheless, many authors whose positron work is based on the augmented-plane-
wave (APW) formalism (or other related formalisms) use simplifications ofψ+ involving
a partial or total neglect of its spatial anisotropy. The reason for this is that the APW
rate formula including the fully anisotropic positron wave function leads to mathematical
expressions which are too complicated for many practical purposes [28, 29].

2. Theory

The momentum density of a non-interacting electron–positron pair (within a periodic lattice)
for the momentumk + G and statekj reads

ρ IPM
j (k + G) = n(kj)

∣∣∣∣ ∫
�

d3r ψ+(r)φkj (r) exp[−i(k + G) · r]

∣∣∣∣2

. (2)

ψ+(r) describes the wave function of the thermalized positron, andφkj (r) is the wave
function of a Bloch electron with (reduced) Bloch vectork in the j th band. G is a
reciprocal-lattice vector,� is the volume of the crystal andn(kj) denotes the occupation
number (0 or 1) in the statekj . Due to the Bloch property of the wave functions, this
density (henceforth, the superscript IPM will be omitted) can be expressed as

ρj (k + G) = n(kj)

∣∣∣∣ ∑
H

ukj (H)v(G − H)

∣∣∣∣2

(3)
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whereH is also a reciprocal-lattice vector, andukj andv are the coefficients of the Fourier
expansions of the functionsφkj and ψ+, respectively. According to [4], the electron–
positron densitiesρj can be written as

ρj (k + G) = n(kj)|ukj (Gkj )|2|v(G − Gkj )|2
[
1 + αkj (G)

]2
(4)

where

αkj (G) =
∑

H 6=Gkj

v(G − H)ukj (H)

v(G − Gkj )ukj (Gkj )
(5)

with Gkj as the reciprocal-lattice vector belonging to the ‘leading’ Fourier coefficient of
the electron wave function with the property|ukj (Gkj )| > |u(H)|. As one can see from
equation (4),G = Gkj refers the main contribution of the electron–positron momentum
density (with the electron in the statekj ), whereas all vectorsG 6= Gkj belong to Umklapp
components of this density.

In the following investigation, we shall focus our attention on the question of how
sensitively the densityρj (k + G) reacts to different approximations used in calculating the
positron wave function. For this purpose, we start with the following definitions.

First, we define1ρ+(G − Gkj ) as the relative difference of the squares of the Fourier
coefficients belonging to a chosen reciprocal-lattice vectorG − Gkj for two models of
ψ+, namely ψ(m)

+ and ψ(l)
+ , where the indices(m) and (l) are used in such a way that

|v(m)(G − Gkj )| > |v(l)(G − Gkj )| is valid. Then,1ρ+(G − Gkj ) is described by the
positive quantity

1ρ+(G − Gkj ) =
[
v(m)(G − Gkj )

]2 − [
v(l)(G − Gkj )

]2[
v(l)(G − Gkj )

]2 =
[
v(m)(G − Gkj )

v(l)(G − Gkj )

]2

− 1.

(6)

Secondly, we define the sensitivity1ρj(k +G) of the electron–positron density for the
(occupied) electron statekj within the Brillouin zone centred around the reciprocal-lattice
vector G, also with respect to different models of the positron wave function. We define
this positive quantity1ρj(k + G) by the expression

1ρj(k + G) = |ρ(m)
j (k + G) − ρ

(l)
j (k + G)|/min

{
ρ

(m)
j ; ρ

(l)
j

}
. (7)

Combining equations (7) and (4),1ρj can be written in the form

1ρj(k + G) =
{[

v(m)(G − Gkj )

v(l)(G − Gkj )

] [
1 + κ

(l,m)

kj (G)
]}2n

− 1 (8)

wheren = +1 for ρ
(m)
j > ρ

(l)
j andn = −1 for ρ

(m)
j < ρ

(l)
j . Here it is important to emphasize

that for |v(m)(G − Gkj )| > |v(l)(G − Gkj )|, ρ
(m)
j (k + G) can be either greater or smaller

thanρ
(l)
j (k + G). The quantityκkj which occurs in expression (8) is given by

κ
(l,m)

kj (G) =
[
α

(m)

kj (G) − α
(l)

kj (G)
] /[

1 + α
(l)

kj (G)
]

. (9)

Here α(i) for i = l or i = m is given by equation (5) withv(G) replaced byv(i)(G).
As can be seen from equation (8), the sensitivity1ρj depends on the ratio of particular
Fourier coefficients belonging to different approximations used in calculating the positron
wave function, and on the quantityκkj given by equation (9) whose behaviour is—as will
be shown later—mainly determined by the Fourier coefficientsukj (G) of the electron wave
function in the statekj .
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On comparing equations (8) and (6), it is obvious that there are strong connections
between the quantities1ρj(k + G) and 1ρ+(G − Gkj ). In fact, it is one of the main
purposes of this paper to find these connections. Therefore, we finally define the quantity
y which is given by the positive ratio

y(κkj ) = 1ρj(k + G)/1ρ+(G − Gkj ). (10)

To facilitate the reading of the formulae in the following sections, the indexj in
ρj (k + G) and the indexkj in αkj , κkj andukj will be omitted from now on.

2.1. The parametersα andκ

Before we start to study the relations between1ρ and1ρ+, we will estimate the quantities
α(G) andκ(G), considering the two casesG = Gkj andG 6= Gkj separately.

As it was shown in [4], forG = Gkj , the application of Abel’s lemma to equation (5)
allows us to expressα(Gkj ) via

α(i)(Gkj ) = x(i)

u(Gkj )
max

[H 6=Gkj ]
|u(H)| (i = m, l) (11)

where|x(i)| 6 1, i.e.α(i)(Gkj ) is always considerably smaller than 1 (in appendix A of [4],
in equation (A6), it should readα(Gkj ) instead ofα(G)). Using equations (9) and (11),
one gets

κ(l,m)(Gkj ) =
[
x(m)

x(l)
− 1

]
1

1 + 1/α(l)(Gkj )
. (12)

For an estimation of the ratiox(m)/x(l), we combine equations (5) and (11), obtaining the
sums

S(i) =
∑

H 6=Gkj

v(i)(Gkj − H)u(H) = x(i)v(i)(0) max
[H 6=Gkj]

|u(H)|

with i = m or l. Then we have

S(l,m) ≡ S(m) − S(l) =
[
x(m)v(m)(0)

x(l)v(l)(0)
− 1

]
S(l) ≈

[
x(m)

x(l)
− 1

]
S(l)

where the last (approximative) identity follows from the fact that the first Fourier coefficient
of the positron wave function changes slightly with the model used, i.e.v(m)(0) ≈ v(l)(0)

(see section 2.3). However,S(l,m) can also be considered as the sum∑
H 6=Gkj

[
v(m)(Gkj − H) − v(l)(Gkj − H)

]
u(H).

Provided that (i) the Fourier coefficients ofψ+ for the first reciprocal-lattice vectors,
which give the largest contribution to the sumS(i), are only weakly dependent on the
approximations used in calculatingψ+, and (ii)

∑
G v(G) = 0, one could expect that

|S(l,m)| � |S(l)|. This leads to the condition that|x(m)/x(l) − 1| � 1. Taking this into
account together with the fact thatα(Gkj ) is small, equation (12) gives the general result

|κ(Gkj )| � 1. (13)

For G 6= Gkj , corresponding to Umklapp components ofρ(k + G), it is convenient to
write equation (5) in the form

α(i)(G) = 1

v(i)(G − Gkj )u(Gkj )

u(G)v(i)(0) +
∑

H 6=G,Gkj

v(i)(G − H)u(H)

 (14)
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with i = m or l. The application of Abel’s lemma to the second term of this equation leads
to the expression

α(i)(G) = v(i)(0)

u(Gkj )v(i)(G − Gkj )

[
u(G) + x(i)umax

]
(15)

with

umax = max
[H 6=G,Gkj ]

|u(H)|

and |x(i)| < 1. Inserting this in equation (9), one gets forκ(l,m) the form

κ(l,m)(G) =
{

v(l)(G − Gkj )

v(m)(G − Gkj )
η(l,m)(G) − 1

}
1

1 + 1/α(l)(G)
(16)

where

η(l,m)(G) = v(m)(0)
[
u(G) + x(m)umax

]
v(l)(0)

[
u(G) + x(l)umax

] (17)

and

α(m)(G) = η(l,m)(G)α(l)(G)
v(l)(G − Gkj )

v(m)(G − Gkj )
. (18)

Becausev(m)(0) ≈ v(l)(0), the quantityη(l,m) is close to unity except when|u(G)+x(i)umax|
takes such small values that the difference betweenx(m) andx(l) dominates the quotient in
equation (17).η(l,m) = 1 means thatκ(l,m) (and also1ρ) depends only on the change in the
particularv(G − Gkj ) coefficient (see equations (8) and (16)). Whenη(l,m) 6= 1, κ(l,m) and
1ρ depend on the changes of all of the Fourier coefficients of the positron wave function.

Henceforth, such Umklapp components, for which the density has the property

ρ(k + G) > |u(Gkj )|2|v(G − Gkj )|2
but also|u(G)+xumax| is not close to zero (which means thatα cannot be close to zero), will
be calledrelevantcomponents. So, forrelevantcomponents, we haveα > 0 or α < −2 (see
equation (4)) as well asη(l,m) being close to unity. We should point out that all densities
of remarkably high value which can be recognized in the experiment belong torelevant
components. The opposite statement is not true—i.e. somerelevantcomponents can have
a small value ifv(G − Gkj ) is small.

2.2. The behaviour of the functiony(κ)

As we emphasized before, the functiony which has been introduced by equation (10) plays
a central role in our investigation. It is therefore important to have a good knowledge about
this function, especially as regards its dependence on the quantityκ(l,m) defined by equation
(16). This dependence can be directly obtained by the use of equations (6), (8) and (10),
and the functional relations betweenα(m), α(l) andκ(l,m) can be derived by using equations
(16)–(18).

To make the following formulae more readable, henceforth allv(m) andv(l) given without
an argument meanv(m)(G − Gkj ) andv(l)(G − Gkj ), respectively.

The typical behaviour ofy is given in figure 1 where we show this function for
v(m)/v(l) = 1.5 which corresponds to1ρ+ = 1.25. Special (negative) values ofκ(l,m)

for which y = 0 or 1 (see figure 1) are as follows:

κ
(l,m)

1 = |v(l)/v(m)| − 1 and κ
(l,m)

2 = (v(l)/v(m))2 − 1

κ
(l,m)

3 = −(v(l)/v(m))2 − 1 and κ
(l,m)

4 = −|v(l)/v(m)| − 1.
(19)
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Figure 1. y(κ) and the average value ofα(κ) = (α(m) + α(l))/2 for v(m)/v(l) = 1.5 and
η(l,m) = 1 are represented by chain and full curves, respectively.κ denotesκ(l,m).

This figure also showsα as a function ofκ(l,m). For the parameterη(l,m) (equation (17)),
we chose the value 1 becauseη(l,m) ≈ 1 is typical for relevantUmklapp components (see
section 2.1). In this case, the functional behaviour ofα(m) andα(l) is similar, and therefore
we only present the mean values ofα(m) and α(l). Now, we shall focus our attention on
those regions ofκ(l,m) wherey < 1 which is—according to figure 1—obviously the case
for −2 6 κ(l,m) 6 κ3 and forκ2 6 κ(l,m) 6 0. We see that for the first of these two regions,
both α(m) andα(l) are close to –1. According to equation (4), such values ofα belong to
small (i.e.non-relevant) components ofρ(k + G) which are of no interest for our studies.
For the second region ofκ(l,m) where y is smaller than 1, the correspondingα(m)- and
α(l)-values obey the relations

α(i)(G) > 0 (i = m, l) (20)

and, according to equations (16)–(18),

α(l)(G) < − [
1 + v(m)/v(l)

]
and α(m)(G) < − [

1 + v(l)/v(m)
]
. (21)

Additionally, as can be directly derived from equations (16) and (18), forv(m)/v(l) > 0 and
for η(l,m) = 1, bothα(m)(κ) andα(l)(κ) have the same vertical asymptote forκ = κ1.

Therefore, we can say that in the regionκ2 6 κ(l,m) 6 0 where we havey < 1, the
values ofα are either positive (equation (20)) or they are at least approximately smaller
than –2, provided that|v(m)/v(l)| is not too different from 1 (see equation (21)). This is one
of the most important results of this paper, because it means that we can be sure that, for
all relevantUmklapp densities,y will be smaller than 1, i.e.1ρ+(G − Gkj ) represents an
upper limit for 1ρ(k + G).

In figure 2(a), we also show
(
α(m) + α(l)

)
/2 as a function ofκ(l,m), also forv(m)/v(l)

= 1.5, but for two different values ofη(l,m) 6= 1, namely for 1.05 and for 0.952. In these
cases, as previously mentioned,1ρ depends on the change of all of the Fourier coefficients
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Figure 2. (a) α = (α(m) + α(l))/2 as a function ofκ(l,m), corresponding tov(m)/v(l) = 1.5, is
given by full and broken curves forη(l,m) = 1.05 and 0.952, respectively. (b)α(l) andα(m) for
η(l,m) = 1 andv(m)/v(l) = −1.5 are shown by broken–dotted and broken–double-dotted curves,
respectively.

of ψ+, and the position of the vertical asymptote ofα (hereafter calledκP) will no longer
coincide with κ1. For example, forη(l,m) > v(m)/v(l), κP is greater than zero and, as a
consequence, for all positive values ofα, we havey > 1 and, therefore,

1ρ(k + G) > 1ρ+(G − Gkj ).

However, such high values ofη(l,m) are never connected withrelevant components of
ρ(k + G).

For v(l)/v(m) < η(l,m) < 1 and 1< η(l,m) < v(m)/v(l), κP is smaller or greater than
κ1, respectively, but it is always a negative number, and the conditiony < 1 is satisfied
for all positive values ofα and also for all negativeα which are connected withrelevant
components of the density.

The appearance of small values ofy for κ ≈ κ1 can also be considered in the following
way: for very high values of|α|, one obtains using equations (4) and (15) that

ρ(i)(k + G) ≈ |v(i)(0)|2|u(G) + x(i)umax|2 (22)

with umax as defined in section 2.1. Consequently, using equations (8) and (16), one gets

1ρ(k + G) ≈ [
η(l,m)

]2n − 1 (23)

(n = +1 for ρ(m) > ρ(l) andn = −1 for ρ(m) < ρ(l)) which means that1ρ(k + G) is no
longer dependent on the Fourier coefficients of the positron wave function forG − Gkj .
Taking into account thatη(l,m) is close to unity for allrelevantcomponents, we find that
1ρ(k + G) is close to zero.

Figure 2(b) shows the behaviour ofα in connection with a change of sign ofv(G−Gkj )

for different models ofψ+. This can only happen for very small Fourier coefficients of the
positron wave function belonging to large vectorsG−Gkj . Of course, if the corresponding
density is to be arelevantone, |α| must also be large, and—as seen from this figure—for
such|α|, y is less than 1.
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Finally, we return to a discussion of the particular case of the leading components of
the density, i.e. forG = Gkj . It follows from the argumentation of section 2.1 thatκ(Gkj )

is small with respect to 1 but might be positive or negative. Due to this,1ρ+(0) cannot
be reliably considered as an upper limit of1ρ(k + Gkj ) because of the fact thaty could
be greater than 1. However, because both quantitiesκ(Gkj ) and 1ρ+(0) are small, the
changes in the leading component of the density are small, too (see equation (8)).

Here we would like to point out an important property of1ρ. If the lattice effects are
small, i.e. if u(Gkj ) strongly dominates over all other Fourier coefficients of the electron
wave function, then we learn from equation (11) thatα(Gkj ) is a small number. More
marked lattice effects could lead to an increase of|α(Gkj )|. Additionally, according to
equation (12),|κ(Gkj )| is also an increasing function of|α(Gkj )|. As we already know
(compare figure 1), for positive values ofκ, y > 1 goes up withκ, and this increase might
be extremely strong especially for small values of1ρ+ (typical for the leading components
of ρ(k + G)). Therefore, in this case, increasing lattice effects could lead to values ofy

which are significantly higher than 1. In contrast, forrelevantUmklapp components (the
region whereκ2 6 κ 6 0), the opposite can be observed. In this case, as can also be seen
from figure 1, an increase of the significance of the lattice effects, i.e. an increase of|α|,
leads to a decrease ofy, and |α| → ∞ has the consequence thatκ → κ1 and y → 0 if
η(l,m) is close to unity (this always takes place for Umklapp components of high density, as
e.g. are found for transition metals). This is important because Umklapp densities of high
values are of specific interest for both experimental and theoretical studies—for example,
studies of correlation effects.

To end this section it should be noticed that our theory can describe various features of
ρ( p). For example, one can show that generally, i.e. except for for very specific (particular)
changes of bothv(G − Gkj ) andv(0),

1ρ(k + G) > 1ρ+(0).

For this purpose let us rewrite equation (4) in the form

ρ(k + G) = n(kj)|u(Gkj )|2|v(0)|2 [1 + β(G)]2

where

β(G) = −1 + v(G − Gkj )

v(0)
+ u(G)

u(Gkj )
+ xumax

u(Gkj )

with xumax as defined in section 2.1. Taking into account the relationship betweenxumax

andα(G), β(G) reads

β(G) = −1 + v(G − Gkj )

v(0)
[1 + α(G)] . (24)

Similarly to the way in which we describedρ(k + G) using equation (4), we define1ρ

according to the formula (8) where nowv(i)(G − Gkj ) and κ(l,m) are replaced byv(i)(0)

and κ̃ (l,m), respectively, where

κ̃ (l,m)(G) = β(m)(G) − β(l)(G)

1 + β(l)(G)
. (25)

Here we study the relationship between1ρ(k+G) and1ρ+(0) which describes the change
of the leading Fourier coefficient of the positron wave function,v(0). It is given by the same
function y (which is defined by equation (10) and presented in figure 1) if1ρ+(G − Gkj )

in equation (10) is replaced by1ρ+(0), which is usually a small number. All of the
expressions for the negativeκi are exactly the same if one resets thev(i)(G − Gkj ) in
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equation (19) tov(i)(0). Due to the fact that1ρ+(0) + 1 ≈ 1, we obtainκ̃1 ≈ κ̃2 ≈ 0
and κ̃3 ≈ κ̃4 ≈ −2. Taking into account that̃κ(l,m) cannot be close to−2, the condition
1ρ(G) < 1ρ+(0) requires fulfilment of the inequality

v(l)(0)

v(m)(0)
<

v(m)(G − Gkj )[1 + α(m)(G)]

v(l)(G − Gkj )[1 + α(l)(G)]
<

v(m)(0)

v(l)(0)

which is connected to a specific change of bothv(G − Gkj ) and v(0). Therefore, the
probability of finding1ρ(G) < 1ρ+(0) is very small.

2.3. Changes of the Fourier coefficients of the positron wave function

Here we study the sensitivity of the Fourier coefficients of the positron wave functionψ+(r)

with respect to arbitrarily different approximations. As regards the use of such approximated
positron wave functions in IPM rate calculations, see our argumentation in section 1. As
an example, let us consider a muffin-tin approximation ofψ+ as was originally proposed
by Loucks [30] and has been discussed in detail in [20]:

ψ(L)
+ (r) =

{
c for |r| > rMT

ψsph(r) for |r| 6 rMT
(26)

whereψsph(r) is the spherical average of an APW positron wave function inside the muffin-
tin sphere with the radiusrMT. Outside this sphere,ψ+ is approximated by the constantc.
Due to this special procedure,c does not coincide withψsph(r = rMT), leading to a step of

ψ(L)
+ (r) at the surface of the muffin-tin sphere.

The Fourier coefficients ofψ(L)
+ (r) can be easily calculated:

v(G) = 4π

�0
c

[
�0

4π
δG,0 −

∫ rMT

0
dr w(r)j0(|G|r)

]
(27)

with

w(r) = r2

[
1 − ψsph(r)

c

]
. (28)

�0 is the volume of the unit cell, andj0(x) means the spherical Bessel function of zeroth
order. Due to the discontinuity ofψ(L)

+ (r) for |r| = rMT, w(r) is not necessarily zero for
the argumentr = rMT.

Equation (27) teaches us that the sensitivity of the Fourier coefficientsv(G) with respect
to (small) changes of the positron wave function will be determined by (i) the details of
the change ofw(r) and (ii) the oscillatory behaviour of the Bessel functionj0. These
oscillations increase with increasing|G| leading to a partial cancellation of the positive
and negative parts of the integral in equation (27). Due to this fact, a change ofw(r) will
influence the integral values and the Fourier coefficients ofψ(L)

+ . The greater the values of
|G| are, the greater this influence will be. Therefore, we expect that the sensitivity ofv(G)

with respect tow(r) will be small for G = (000), moderate for reciprocal-lattice vectors
G 6= (000) which lie near to the central BZ (i.e. forG = (110) and G = (111) for bcc
and fcc structures, respectively), and might be large for Brillouin zones far away from the
centre. Figure 3 illustrates this argumentation for lithium (for other metals, the situation is
similar).

The above considerations are strongly confirmed by extensive numerical tests where
we investigated the sensitivity1ρ+ (equation (6)) for the bcc metals Li, Na, K, Rb, Cs,
and V and for the fcc metals Al, Cu, and Pd [24]. For these tests, we slightly changed
the functionsψsph(r) (to give an impression of the strength of this change, we mention
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Figure 3. w(1)(r) and w(2)(r) as functions ofr/rMT inside the muffin-tin sphere for lithium
are represented by broken and chain curves, respectively. The numbers (1) and (2) refer to
two slightly different approximations to the positron wave functions as described in section 2.3
of this paper. The full curves refer to the Bessel functions of zeroth orderj0(|G|r) for the
reciprocal-lattice vectorsG = (000), (110), (200), (211) and (220).

here that the relative deviation between the original (curve (1)) and the changed (curve (2))
functions on the surface of the muffin-tin sphere was about 1.3% for all metals investigated).
These relatively small deviations ofψsph(r) lead to significant changes of the corresponding
functionsw(r) (equation (28)) as is demonstrated for lithium in figure 3.

For the bcc metals, we obtained the following values of1ρ+(G): for the central
momentum region (G = (000)), we got1ρ+ between 0.03 and 0.07%, and for the nearest
Umklapp regions (centred aroundG = (110) and equivalent vectors) we got1ρ+ between
1.3 and 3.0%. ForG = (200), the values of1ρ+ dramatically increase—up to 14% for
V or even 22% for Li. For the fcc metals (Al, Cu, and Pd), the situation is similar: small
sensitivities forG = (000), moderate1ρ+-values for the (111) and (200) Umklapp regions,
and extremely high values for the BZ with a greater distance to the centre:1ρ+ > 80%
for G = (220).

3. Summary

In this paper, we have studied the influence of the approximations used in calculating
the positron wave function on the electron–positron momentum densities. The two cases
G = Gkj (the leading term of the density describing the Fermi surface in the extended-
zone scheme) andG 6= Gkj (describing Umklapp components) were considered separately.
Our theory, which explains numerical results obtained in [19–24], leads to the following
conclusions.
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(i) 1ρ(Gkj ), describing changes of the leading component of the density, can be either
greater or smaller than1ρ+(0). Nevertheless, because|κ(Gkj )| � 1 (see section 2.1) and
1ρ+(0) � 1, 1ρ(Gkj ) is always very small.

(ii) For all relevantUmklapp components of the density, we have

1ρ(k + G) < 1ρ+(G − Gkj ).

(iii) The Fourier coefficients of the positron wave function forG−Gkj —as reciprocal-
lattice vectors belonging to Brillouin zones which are near to the central region of the
momentum space—are generally only weakly sensitive to the approximations used in
calculating the positron wave function, i.e. the corresponding values of1ρ+ are small.
Only if two approximations used in calculatingψ+ are significantly different will higher
values of1ρ+ occur [24].

(iv) For relevantUmklapp components,y < 1; and the higher the value of the Umklapp
density, the smaller the value ofy. In the extreme case of very high values of|α|, y and
1ρ(k + G) are close to zero.

These facts lead to the main conclusion of this paper, namely that in each metal there are
somestablecomponents ofρ(k + G), i.e. densities which are only weakly sensitive to the
approximations used in the calculation of the positron wave function. This is remarkable
because it is only thesestable densities that have values which are high enough to be
studied experimentally. This property of the MDAP is important for a reliable verification
of various approaches used for obtaining a theoretical description of the electron–positron
interaction (see the introduction).

Finally, we would like to point out that the theory presented here is even more general
and could be applied for each case of arbitrary renormalized non-interacting quasiparticles
in a periodic lattice potential. The only restrictions are an absence of nodes of the wave
function of one of the quasiparticles and its constant value forr = 0 (i.e. at the positions
of the ions). In the case of non-interacting renormalized quasiparticles, one can consider
such interacting particles where an interaction is included in their wave functions (such a
treatment is applied in the LDA [6–8]). In this way, our theory can also be applied in
the study of the influence of a correlation functionf (r) on the electron–positron densities
within the LDA.
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[2] Borónski E 1992Mater. Sci. Forum105–110181
[3] Stachowiak H and Rubaszek A 1993Solid State Phenom.28 & 29 7
[4] Kontrym-Sznajd G and Rubaszek A 1993Phys. Rev.B 47 6950
[5] Kontrym-Sznajd G and Rubaszek A 1993Phys. Rev.B 47 6960
[6] Daniuk S, Kontrym-Sznajd G, Mayers J, Rubaszek A, Stachowiak H, Walters P A and West R N 1985

Positron Annihilationed P C Jainet al (Singapore: World Scientific) p 43
[7] Daniuk S, Kontrym-Sznajd G, Mayers J, Rubaszek A, Stachowiak H, Walters P A and West R N 1985

Positron Annihilationed P C Jainet al (Singapore: World Scientific) p 279
[8] Daniuk S, Kontrym-Sznajd G, Mayers J, Rubaszek A, Stachowiak H, Walters P A and West R N 1987

J. Phys. F: Met. Phys.17 1365



2412 G Kontrym-Sznajd and H Sormann
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