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Abstract. In this paper, the behaviour of the electron—positron momentum density of non-
interacting particlesp'™(p), in a periodic lattice potential is investigated. On the basis of
general considerations, we show that in each metal there are some compongtt¥ (gf)

which are only weakly sensitive to approximations used in the calculation of the positron wave
function ), (r). This means that in these regionspafthe two-particle density'™ (p) can be
evaluated with a high accuracy, largely independently of uncertainties arising from the different
approximations used in calculating the functifh (r). This property ofo'™ (p) can be useful

for the verification of various approaches used for describing the electron—positron interaction
in real metals.

1. Introduction

In experiments using the angular correlation of positron annihilation radiation (ACPAR)
technique, one measures linear (or planar) integrals of the momentum density of electron—
positron annihilation pairs (MDAP)p(p). It is well known that the annihilation process

is strongly influenced by the Coulomb interaction between the electrons and the positron.
Theoretically, this influence can be described by a momentum-dependent enhancement factor
€(p) which is defined as the ratio of the real momentum density and the density within the
independent-particle model (IPM):

e(p) = p(p)/p"™M(p) @)

where, in the IPM, the interaction of the annihilating fermions is completely ignored.

The enhancement of the annihilation rate has been intensively studied for the jellium
model (for reviews see [1-3]). However, there are still problems concerning a description of
the enhancement effect in realistic systems, i.e. for the inhomogeneous electron gas found in
real metals. Here various theoretical approaches have been proposed (for reviews see [1-5])
which lead to different results for(p), especially for the higher-momentum components
(HMC) of the momentum density distribution [6—18].

To decide which theoretical approach describes reality more closely, careful comparisons
of theoretically and experimentally obtained MDAP results are necessary. Of course, such
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a comparison requires a precise calculatiop'6(p) as well as a precise analysis of the
experimental data [19-24]. However, as has been shown in [19-21], the HMC densities are
generally remarkably sensitive to details of the calculations, such as the crystal potentials
used and the accuracy of the positron wave function. Nevertheless, as has been shown by
Sormann andob for the alkali metals (bcc structure) [19] and for Cu and Pd (fcc structure)
[21], this sensitivity of the MDAP is weak for the HMC which lie close to the centre of the
momentum space. Moreover, Daniek al [23] obtained the result that total annihilation
rates are also only weakly sensitive to details of the calculation of the positron wave function
g, (7).

' In the present paper which is based on the theory proposed in [4], we explain numerical
results from the literature [19—24]. Beyond that, the theory presented in section 2 is even
more general, showing that for each metal and for each electronkstdteere exist at least
two components op'™(p) which are only weakly sensitive to approximations used in
evaluating the positron wave function, namely the leading density component (the density
of the highest value) and at least one dominant Umklapp component. Moreover, our theory
also shows that the higher the value of the Umklapp density, the smaller this sensitivity
is, which is remarkable because it is just these ‘stable’ densities that can be really studied
experimentally. This property of the MDAP is important for a reliable verification of various
approaches used for a theoretical description of the electron—positron interaction, because
if we compare experimental and theoretical annihilation rates especially for the Umklapp
components we have no need to be concerned that eventual disagreements between theory
and experiment may be connected with erroneous IPM rate calculations due to uncertainties
arising from approximations used in calculating the positron wave function.

In this context it should be emphasized that there is, of course, no actual necessity to
use approximative positron wave functions in IPM rate calculations. In fact, there exist rate
formulae which take into account the full spatial anisotropyof—for example the formula
based on the Korringa—Kohn—Rostoker (KKR) method and a multiple-scattering formalism
[25-27]. Nevertheless, many authors whose positron work is based on the augmented-plane-
wave (APW) formalism (or other related formalisms) use simplificationg pfinvolving
a partial or total neglect of its spatial anisotropy. The reason for this is that the APW
rate formula including the fully anisotropic positron wave function leads to mathematical
expressions which are too complicated for many practical purposes [28, 29].

2. Theory

The momentum density of a non-interacting electron—positron pair (within a periodic lattice)
for the momentunk + G and statekj reads

2

PPk + G) = n(kj) /Q & W, (M expl-ik + G 1l . ()

g (r) describes the wave function of the thermalized positron, ¢gpdr) is the wave
function of a Bloch electron with (reduced) Bloch vectlerin the jth band. G is a
reciprocal-lattice vectorg2 is the volume of the crystal and(kj) denotes the occupation
number (0 or 1) in the statkj. Due to the Bloch property of the wave functions, this
density (henceforth, the superscript IPM will be omitted) can be expressed as

2
pi(k+ G) = n(kzj)‘ > uk; (H)v(G — H) €)
H
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whereH is also a reciprocal-lattice vector, angl; andv are the coefficients of the Fourier
expansions of the functiong,; and y_, respectively. According to [4], the electron-
positron densitiep; can be written as

pi(k + G) = n(kj)lug,; (Gi)PIv(G — G P [L+ ar; (@] (4)
where

(G — H)u,;(H)
(@) = i
@i () H;kj V(G — Gij)uy;(Gr;)) ;

with G; as the reciprocal-lattice vector belonging to the ‘leading’ Fourier coefficient of
the electron wave function with the propetiy;(G;)| > |u(H)|. As one can see from
equation (4),G = Gy; refers the main contribution of the electron—positron momentum
density (with the electron in the stakg’), whereas all vector& # Gi,; belong to Umklapp
components of this density.

In the following investigation, we shall focus our attention on the question of how
sensitively the density;(k + G) reacts to different approximations used in calculating the
positron wave function. For this purpose, we start with the following definitions.

First, we defineAp, (G — Gy;) as the relative difference of the squares of the Fourier
coefficients belonging to a chosen reciprocal-lattice ve@or Gy; for two models of
g, namelquSf” and ljJSZ_), where the indicesm) and (/) are used in such a way that
"G — G| > [vP(G — Gg;)| is valid. Then,Ap (G — Gg;) is described by the
positive quantity

Mm@ _ N O — 12 M — )72
89 (@ — Gy = G el G = G =[v - G’”)} -1

[vO(G - Gi)] V(G = Gy))
(6)
Secondly, we define the sensitivityp; (k + G) of the electron—positron density for the
(occupied) electron statej within the Brillouin zone centred around the reciprocal-lattice

vector G, also with respect to different models of the positron wave function. We define
this positive quantityAp;(k 4+ G) by the expression

Aps(k+G) = o™ (k + G) — o (& + G)l/min o™ "] )
Combining equations (7) and (4\p; can be written in the form
v(m)(G _ ij) @m) 2n
Apj(k+G)— ”:U(I)(C:—C;kj)} [1+Kkj (G)]} -1 (8)

wheren = +1 for pi™ > pi andn = —1for p{" < p"’. Here itis important to emphasize

that for [v(G — Gi))| > v (G — Gy))l, p/™ (k + G) can be either greater or smaller

than p;l)(k + G). The quantityk,; which occurs in expression (8) is given by
W@ = [af) @ - @] [[1+ef@)]. ©)

Herea® for i =1 or i = m is given by equation (5) with/(G) replaced byv? (G).

As can be seen from equation (8), the sensitivity; depends on the ratio of particular
Fourier coefficients belonging to different approximations used in calculating the positron
wave function, and on the quantity,; given by equation (9) whose behaviour is—as will
be shown later—mainly determined by the Fourier coefficiap}$G) of the electron wave
function in the state;.



2404 G Kontrym-Sznajd and H Sormann

On comparing equations (8) and (6), it is obvious that there are strong connections
between the quantitieap;(k + G) and Ap; (G — Gi;). In fact, it is one of the main
purposes of this paper to find these connections. Therefore, we finally define the quantity
y which is given by the positive ratio

y(krj) = Apj(k + G)/Ap+(G — Gy;). (10)

To facilitate the reading of the formulae in the following sections, the ingex
pj(k+ G) and the indexej in ay;, «x; andug; will be omitted from now on.

2.1. The parameterg and«

Before we start to study the relations betwe®em and Ap,, we will estimate the quantities
a(G) and« (G), considering the two case&s = G; andG # G);; separately.
As it was shown in [4], forG = Gy;, the application of Abel's lemma to equation (5)
allows us to express(Gy;) via
X®

aD(Gy)) = max _ |u(H)| (i =m,l) (11)

u(Grj) [H#Gy)]

where|x®| < 1, i.e.a”(Gy,) is always considerably smaller than 1 (in appendix A of [4],
in equation (A6), it should read(Gy;) instead ofx(G)). Using equations (9) and (11),
one gets

Em(Gri) = X 1 1 12)
N S 0 14 1/aD(Gy))’

For an estimation of the ratio®™ /x), we combine equations (5) and (11), obtaining the
sums

SO = 3" v(Gyj — Hyu(H) =xDv(0) max_|u(H)|
HAGy, [H#Grs]

with i = m orl. Then we have
(m),,(m) 0 (m)
am — o _ oy _ [XVO e o [X 4] o
S =S S _[xU)v(l)(O) 1|8 ) 1|8
where the last (approximative) identity follows from the fact that the first Fourier coefficient
of the positron wave function changes slightly with the model usedp?e(0) ~ v’ (0)
(see section 2.3). Howeves!’™ can also be considered as the sum
> ["(Grj — H) = v (Gy; — H)|u(H).
H#le
Provided that (i) the Fourier coefficients af, for the first reciprocal-lattice vectors,
which give the largest contribution to the sus’, are only weakly dependent on the
approximations used in calculating,, and (i) Y . v(G) = 0, one could expect that
|SEm| « |SP|. This leads to the condition that /x® — 1| « 1. Taking this into
account together with the fact thatGy;) is small, equation (12) gives the general result

ke (Gj)l < 1. (13)
For G # Gy, corresponding to Umklapp componentsgdik + G), it is convenient to
write equation (5) in the form

a(G) = ! |:M(G)U<i)(0)+ > v(i)(G—H)u(H)i| (14)

V(G — Gij)u(Gy;) H#G Gy
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with i = m or[. The application of Abel's lemma to the second term of this equation leads
to the expression

v (0)

G = A @ 15
« & u(Gr)vO (G — Gy;) [”(G) +x Mmax] (15)
with
Umax = max _|u(H)|
[H#G.Gy)]

and|x®| < 1. Inserting this in equation (9), one gets fdt™ the form

o A
U,m) _ v (G - Gk]) 1,m) _ 1
<@ = |G e O 1 1) 4o
where
M (0) [u(G) + x ™ umay]
I,m) G) = v max 17
e v (0) [u(G) + xDumay] (37
and
o)
m) vy _ o (m) O V(G = Gg))
a"(G) =" (G (G)—v<m>(G “ G’ (18)

Becausea ™ (0) ~ v (0), the quantity;’-™ is close to unity except when (G) 4+ x @ umay]

takes such small values that the difference betwe&handx® dominates the quotient in

equation (17).7%™ = 1 means that "™ (and alsoAp) depends only on the change in the

particularv(G — Gy,;) coefficient (see equations (8) and (16)). Whght” # 1, ™ and

Ap depend on the changes of all of the Fourier coefficients of the positron wave function.
Henceforth, such Umklapp components, for which the density has the property

pk+G) > [u(Gr)I*v(G — Gy))?

but alsoju(G)+xumax is Not close to zero (which means thatannot be close to zero), will
be calledrelevantcomponents. So, faelevantcomponents, we hawe > 0 ore < —2 (see
equation (4)) as well ag’™ being close to unity. We should point out that all densities
of remarkably high value which can be recognized in the experiment belongjexzant
components. The opposite statement is not true—i.e. getegantcomponents can have
a small value ifv(G — Gy;) is small.

2.2. The behaviour of the functionx)

As we emphasized before, the functipnwvhich has been introduced by equation (10) plays
a central role in our investigation. It is therefore important to have a good knowledge about
this function, especially as regards its dependence on the quafititydefined by equation
(16). This dependence can be directly obtained by the use of equations (6), (8) and (10),
and the functional relations betweefi”, «” and«“™ can be derived by using equations
(16)—(18).

To make the following formulae more readable, henceforth®l andv® given without
an argument mean™ (G — Gy;) andv?(G — Gy;), respectively.

The typical behaviour ofy is given in figure 1 where we show this function for

v /v = 1.5 which corresponds ta\p, = 1.25. Special (negative) values af’™
for which y = 0 or 1 (see figure 1) are as follows:
Am)y _ . () ;. (m) tm) __ ) 7,,(m)y2
K =Y /" -1 and K =@"/v -1
1 [ /v 2 ™ /™) 19)

g™ = —@P ™2 -1 and k)" = —p@ ™| - 1.
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5 R = e Ry O

Figure 1. y(x) and the average value of(x) = (@™ + a?®)/2 for v™ /v® = 15 and
7™ =1 are represented by chain and full curves, respectivelgenotesc ¢

This figure also shows as a function ofc ™. For the parametey™ (equation (17)),
we chose the value 1 becaugé™ ~ 1 is typical forrelevantUmklapp components (see
section 2.1). In this case, the functional behavioux®? anda® is similar, and therefore
we only present the mean values «ff” ando”’. Now, we shall focus our attention on
those regions ok?™ wherey < 1 which is—according to figure 1—obviously the case
for —2 < k™ < k3 and fork, < k™ < 0. We see that for the first of these two regions,
both o« anda® are close to —1. According to equation (4), such valuea bklong to
small (i.e.non-relevant components op(k + G) which are of no interest for our studies.
For the second region of™ where y is smaller than 1, the correspondiag™- and
a®-values obey the relations

(@) >0 G =m,l (20)
and, according to equations (16)—(18),
(@) < —[1+ 0™ /"] and a™(G) < —[1+vP™]. (21)

Additionally, as can be directly derived from equations (16) and (18)yfty/v® > 0 and
for ™ = 1, botha™ (k) anda” (k) have the same vertical asymptote foe= «.

Therefore, we can say that in the region < «*“™ < 0 where we have < 1, the
values ofa are either positive (equation (20)) or they are at least approximately smaller
than —2, provided thav™ /v®| is not too different from 1 (see equation (21)). This is one
of the most important results of this paper, because it means that we can be sure that, for
all relevantUmklapp densitiesy will be smaller than 1, i.eAp. (G — Gy;) represents an
upper limit for Ap(k + G).

In figure 2(a), we also shofr™ + «") /2 as a function ok ™, also forv™ /v
= 1.5, but for two different values af’™ = 1, namely for 1.05 and for 0.952. In these
cases, as previously mentionetly depends on the change of all of the Fourier coefficients
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(67

12

Figure 2. (@) @ = (@™ +a®)/2 as a function ok "™, corresponding ta™ /v® = 15, is
given by full and broken curves fo!-") = 1.05 and 0952, respectively. (b} and« for

n¢m =1 andv™ /v® = —1.5 are shown by broken—dotted and broken—double-dotted curves,
respectively.

of Y, and the position of the vertical asymptotecofhereafter calledp) will no longer
coincide withx1. For example, fom®™ > v /v® kp is greater than zero and, as a
consequence, for all positive valuesafwe havey > 1 and, therefore,

Ap(k+ G) > Ap (G — Gyj).

However, such high values of?™ are never connected witrelevant components of
ok + G).

For v®@ /™ < p@&m 1 and 1< p¢™ < v /v®, kp is smaller or greater than
k1, respectively, but it is always a negative humber, and the condijtien1 is satisfied
for all positive values otx and also for all negative which are connected wittelevant
components of the density.

The appearance of small valuesyofor « = «; can also be considered in the following
way: for very high values ofx|, one obtains using equations (4) and (15) that

POk +G) ~ v O u(G) + xVuma® (22)
with umax @s defined in section 2.1. Consequently, using equations (8) and (16), one gets
Ap(k+G) ~ [*™]* —1 (23)

(n = +1 for p > p® andn = —1 for p™ < p®) which means thatp(k + G) is no
longer dependent on the Fourier coefficients of the positron wave functio& ferGy;.
Taking into account thay’-™ is close to unity for allrelevantcomponents, we find that
Ap(k + G) is close to zero.

Figure 2(b) shows the behaviour®fin connection with a change of sign ofG —G;)
for different models ofp, . This can only happen for very small Fourier coefficients of the
positron wave function belonging to large vectéfs- G;;. Of course, if the corresponding
density is to be aelevantone, |«| must also be large, and—as seen from this figure—for
such|«|, y is less than 1.
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Finally, we return to a discussion of the particular case of the leading components of
the density, i.e. foG = Gy;. It follows from the argumentation of section 2.1 thaGy,;)
is small with respect to 1 but might be positive or negative. Due to this,(0) cannot
be reliably considered as an upper limit 8p (k + G,;) because of the fact that could
be greater than 1. However, because both quantit(€s;;) and Ap,(0) are small, the
changes in the leading component of the density are small, too (see equation (8)).

Here we would like to point out an important property &p. If the lattice effects are
small, i.e. ifu(Gy;) strongly dominates over all other Fourier coefficients of the electron
wave function, then we learn from equation (11) thdGy;) is a small number. More
marked lattice effects could lead to an increasgodiGy;)|. Additionally, according to
equation (12),|x (G;)| is also an increasing function ¢&(Gy;)|. As we already know
(compare figure 1), for positive values of y > 1 goes up with¢, and this increase might
be extremely strong especially for small valuestgf, (typical for the leading components
of p(k + G)). Therefore, in this case, increasing lattice effects could lead to valugs of
which are significantly higher than 1. In contrast, fetevantUmklapp components (the
region wherec,; < ¥ < 0), the opposite can be observed. In this case, as can also be seen
from figure 1, an increase of the significance of the lattice effects, i.e. an increasg of
leads to a decrease ¢f and|a| — oo has the consequence that— «; andy — O if
n®™ is close to unity (this always takes place for Umklapp components of high density, as
e.g. are found for transition metals). This is important because Umklapp densities of high
values are of specific interest for both experimental and theoretical studies—for example,
studies of correlation effects.

To end this section it should be noticed that our theory can describe various features of
o(p). For example, one can show that generally, i.e. except for for very specific (particular)
changes of both(G — Gy;) andv(0),

Ap(k + G) > Apy(0).
For this purpose let us rewrite equation (4) in the form
p(k+ G) = n(kj)u(Grp)PvO)*[1+ B@G)]
where
U(G_ij) u(G) XUmax
v(0) u(Grj)  u(Grj)
with xumax as defined in section 2.1. Taking into account the relationship betwegg
anda(G), B(G) reads

B(G) = -1+

U(G - ij)
.0 [1+a(@&)]. (24)

Similarly to the way in which we described(k + G) using equation (4), we definap
according to the formula (8) where nov’) (G — Gi;) and«"™ are replaced by (0)
andz™  respectively, where

B™(G) — (@)
1+ B9(&)
Here we study the relationship betweap (k+ G) and Ap, (0) which describes the change
of the leading Fourier coefficient of the positron wave functi®). It is given by the same

function y (which is defined by equation (10) and presented in figure Nof (G — Gi;)
in equation (10) is replaced byp, (0), which is usually a small number. All of the
expressions for the negative are exactly the same if one resets t#&(G — Gx;) in

B(G) = -1+

MG = (25)
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equation (19) tov”(0). Due to the fact thannp, (0) + 1 ~ 1, we obtaink; ~ k» ~ 0
andis ~ k4 ~ —2. Taking into account that®™ cannot be close te-2, the condition
Ap(G) < Ap,(0) requires fulfilment of the inequality

vD©0) v"(G -Gl +a™ (@] v™(0)

< <

v (0 V(G - Gl +aD (@] v (0)
which is connected to a specific change of botlx — G;) and v(0). Therefore, the
probability of findingAp(G) < Ap(0) is very small.

2.3. Changes of the Fourier coefficients of the positron wave function

Here we study the sensitivity of the Fourier coefficients of the positron wave fungtion)

with respect to arbitrarily different approximations. As regards the use of such approximated
positron wave functions in IPM rate calculations, see our argumentation in section 1. As
an example, let us consider a muffin-tin approximationjof as was originally proposed

by Loucks [30] and has been discussed in detail in [20]:

(L) c for |’I°| > ImT

= 26
+ (™ { o) Tor || < rur (26)

whereyy,(r) is the spherical average of an APW positron wave function inside the muffin-

tin sphere with the radiugyr. Outside this sphere), is approximated by the constant

Due to this special procedure,does not coincide withs,,(r = rvr), leading to a step of

ﬂ‘) (r) at the surface of the muffin-tin sphere.

The Fourier coefficients GD$>(r) can be easily calculated:

AT [ Q ur

v(G) = ¢ 7086‘,0_/ dr w(r) jo(IGlr) (27)
Qo 4 0

with
r
w(r) = r2 [1 _ el )] : (28)
C

Qo is the volume of the unit cell, angh(x) means the spherical Bessel function of zeroth
order. Due to the discontinuity opﬂf)(r) for |r| = rur, w(r) is not necessarily zero for
the argument = ryr.

Equation (27) teaches us that the sensitivity of the Fourier coeffici¢as with respect
to (small) changes of the positron wave function will be determined by (i) the details of
the change ofw(r) and (ii) the oscillatory behaviour of the Bessel functign These
oscillations increase with increasin@r| leading to a partial cancellation of the positive
and negative parts of the integral in equation (27). Due to this fact, a changé pwill
influence the integral values and the Fourier coeﬁicientqui)’f. The greater the values of
|G| are, the greater this influence will be. Therefore, we expect that the sensitivitgof
with respect tow(r) will be small for G = (000), moderate for reciprocal-lattice vectors
G # (000 which lie near to the central BZ (i.e. fa& = (110 and G = (111) for bcc
and fcc structures, respectively), and might be large for Brillouin zones far away from the
centre. Figure 3 illustrates this argumentation for lithium (for other metals, the situation is
similar).

The above considerations are strongly confirmed by extensive numerical tests where
we investigated the sensitivithp, (equation (6)) for the bcc metals Li, Na, K, Rb, Cs,
and V and for the fcc metals Al, Cu, and Pd [24]. For these tests, we slightly changed
the functionsy,(r) (to give an impression of the strength of this change, we mention
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1 (000)

0 05 1
r/ P

Figure 3. w®(r) andw@(r) as functions ofr/ryt inside the muffin-tin sphere for lithium

are represented by broken and chain curves, respectively. The numbers (1) and (2) refer to
two slightly different approximations to the positron wave functions as described in section 2.3
of this paper. The full curves refer to the Bessel functions of zeroth ofglé&|r) for the
reciprocal-lattice vector& = (000), (110), (200), (211) and (220).

here that the relative deviation between the original (curve (1)) and the changed (curve (2))
functions on the surface of the muffin-tin sphere was about 1.3% for all metals investigated).
These relatively small deviations @f,(r) lead to significant changes of the corresponding
functionsw(r) (equation (28)) as is demonstrated for lithium in figure 3.

For the bcc metals, we obtained the following valuesAgf, (G): for the central
momentum region@ = (000)), we gotAp, between 0.03 and 0.07%, and for the nearest
Umklapp regions (centred arour@d = (110) and equivalent vectors) we gatp, between
1.3 and 3.0%. FoG = (200, the values ofAp, dramatically increase—up to 14% for
V or even 22% for Li. For the fcc metals (Al, Cu, and Pd), the situation is similar: small
sensitivities forG = (000), moderateAp, -values for the (111) and (200) Umklapp regions,
and extremely high values for the BZ with a greater distance to the cenfe: > 80%
for G = (220.

3. Summary

In this paper, we have studied the influence of the approximations used in calculating
the positron wave function on the electron—positron momentum densities. The two cases
G = Gy; (the leading term of the density describing the Fermi surface in the extended-
zone scheme) an@ # Gy,; (describing Umklapp components) were considered separately.
Our theory, which explains numerical results obtained in [19-24], leads to the following
conclusions.
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(i) Ap(Gj), describing changes of the leading component of the density, can be either
greater or smaller thanp, (0). Nevertheless, because(Gy;)| < 1 (see section 2.1) and
Ap+(0) € 1, Ap(Gy;j) is always very small.

(i) For all relevantUmklapp components of the density, we have

Ap(k+ G) < Ap (G — Gyj).

(iii) The Fourier coefficients of the positron wave function @&r— G, ;—as reciprocal-
lattice vectors belonging to Brillouin zones which are near to the central region of the
momentum space—are generally only weakly sensitive to the approximations used in
calculating the positron wave function, i.e. the corresponding valueamf are small.

Only if two approximations used in calculating, are significantly different will higher
values ofAp, occur [24].

(iv) For relevantUmklapp components; < 1; and the higher the value of the Umklapp
density, the smaller the value of In the extreme case of very high values|ef, y and
Ap(k + G) are close to zero.

These facts lead to the main conclusion of this paper, namely that in each metal there are
somestablecomponents op (k + G), i.e. densities which are only weakly sensitive to the
approximations used in the calculation of the positron wave function. This is remarkable
because it is only thesstable densities that have values which are high enough to be
studied experimentally. This property of the MDAP is important for a reliable verification
of various approaches used for obtaining a theoretical description of the electron—positron
interaction (see the introduction).

Finally, we would like to point out that the theory presented here is even more general
and could be applied for each case of arbitrary renormalized non-interacting quasiparticles
in a periodic lattice potential. The only restrictions are an absence of nodes of the wave
function of one of the quasiparticles and its constant value-fer O (i.e. at the positions
of the ions). In the case of non-interacting renormalized quasiparticles, one can consider
such interacting particles where an interaction is included in their wave functions (such a
treatment is applied in the LDA [6-8]). In this way, our theory can also be applied in
the study of the influence of a correlation functigiir) on the electron—positron densities
within the LDA.
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